Characterization of the S₂N₂H⁻ lon by ¹⁴N and ¹⁵N NMR Spectroscopy

Tristram Chivers* and Kenneth J. Schmidt

Department of Chemistry, The University of Calgary, Calgary, Alberta T2N 1N4, Canada

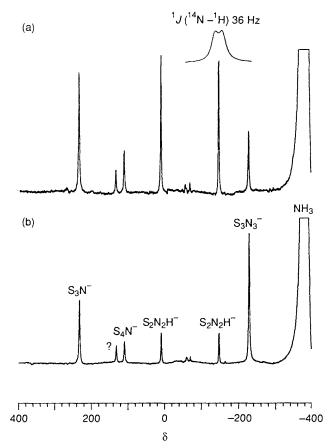
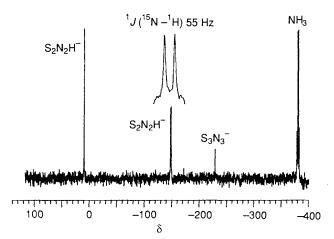
¹⁴N and ¹⁵N NMR spectroscopy shows that the deprotonation of S₇NH by potassium amide in liquid ammonia proceeds *via* the sequential formation of S₇N⁻, S₄N⁻, and S₃N⁻ to give S₂N₂H⁻, which subsequently decomposes to S₃N₃⁻; the S₂N₂H⁻ ion is also produced by treatment of S₄N₄H₄ with 2 mol equiv. of potassium amide in liquid ammonia.

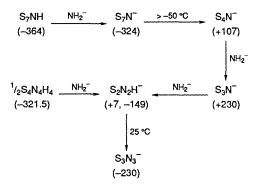
The binary sulphur–nitrogen anions $S_4N_5^{-,1}$ $S_3N_3^{-,2}$ SSNSS^{-,3} SSNS^{-,4} and $SN_2^{2-,5}$ are well characterized. The existence of the $S_2N_2H^-$ ion (1) has been inferred from the preparation of $L_nMS_2N_2H$ complexes, in which (1) acts as a chelating ligand, *via* the deprotonation of $S_4N_4H_4$ in the presence of a metal halide.^{6,7} However, the deprotonation of $S_4N_4H_4$ with potassium hydride yields $S_3N_3^-$ as the final isolated product.⁸ No direct evidence for (1) has been obtained, although the unstable product of the reaction of $S_4N_4H_4$ with 2 mol equiv. of Ph₃CNa has been tentatively characterized as $Na_2N_4S_4H_2$.⁹ ¹⁴N and/or ¹⁵N NMR spectroscopy is an excellent technique for monitoring the formation of sulphur–nitrogen anions.^{10–14} We report here a ¹⁴N/¹⁵N NMR investigation of the deprotonation of S_7NH and

 $S_4N_4H_4$ by KNH_2 in liquid ammonia which provides the first spectroscopic characterization of the thermally unstable $S_2N_2H^-$ ion.

We have already shown that the ¹⁴N NMR spectrum of a deep blue solution of S_7NH in liquid ammonia at 25 °C (after equilibrium has been reached) shows a major resonance at +107 ppm (S_4N^-)^{†12} and a weak resonance at -324 ppm for

^{\dagger} All ¹⁴N and ¹⁵N NMR chemical shifts are given relative to external MeNO₂(*l*) at 0 ppm using the downfield positive convention.


Figure 1. The ¹⁴N NMR spectrum of a KNH₂–S₇NH (3:1) solution in liquid ammonia at 25 °C after (a) 2 h, (b) 10 days in a thick-walled 10 mm glass tube sealed under vacuum. Spectra were acquired on a Bruker AM 400 spectrometer operating at 28.915 MHz for ¹⁴N and were run unlocked. A pulse length of 20 µs provided a *ca*. 90° tip angle and 8 K data points were collected. Typically 5 000–15 000 scans were co-added for a total acquisition time of 10–40 min. Chemical shifts are with respect to external MeNO₂(*l*).

 $S_7N^{-.13}$ We now report that the addition of two molar equivalents of potassium amide to this solution results in the partial conversion of S_4N^- into S_3N^- [$\delta(^{14}N) + 230 \text{ ppm}$]¹² and $S_3N_3^-$ [$\delta(^{14}N) - 230 \text{ ppm}$].¹² The addition of a third molar equivalent of KNH₂ produces two new resonances at +7 and -149 ppm, [Figure 1(a)], which do not correspond to any known sulphur–nitrogen anion. These resonances are associated with the same species since they grow and decay together [Figure 1(b)]. The signal at -149 ppm is a doublet [¹J(¹⁴N-¹H) 36 Hz] [Figure 1(a)] indicating that one of the nitrogen atoms is attached to a hydrogen atom.

The same species is generated by treatment of 99% ¹⁵N-enriched S₄N₄H₄ with two molar equivalents of potassium amide in liquid ammonia (Figure 2). Two resonances are observed at +9 and -148 ppm [¹J(¹⁵N-¹H) 55 Hz] in addition to a weak resonance at -230 ppm for S₃N₃⁻. The ratio ¹J(¹⁵N-¹H)/¹J(¹⁴N-¹H) is 1.53, *cf.* γ (¹⁵N)/ γ (¹⁴N) = 1.40, (where γ = magnetogyric ratio). The coupling between the inequivalent nitrogen atoms was determined for the resonance at +9 ppm to be *ca.* 2.2 Hz‡ [*cf.* ²J(¹⁵N-¹⁵N) 2.2 Hz for Ph₃AsNS₃N₃].¹⁰ These NMR data are uniquely consistent with a species

Figure 2. The ¹⁵N NMR spectrum of a *ca*. 0.07 M solution of 99% ¹⁵N-enriched S₄N₄H₄ in liquid ammonia containing two molar equivalents of KNH₂ at 25 °C in a thick-walled 16 mm tube sealed under vacuum. The tube was mounted coaxially within a 20 mm tube and D₂O was added to the outer tube as a lock. Spectra were acquired on a Bruker AM 400 wide bore spectrometer operating at 40.557 MHz for ¹⁵N. A pulse length of 40 µs provided a *ca*. 45° tip angle and 16 K data points were collected; 226 scans with 30 s repetition time were used.

Scheme 1. Sulphur-nitrogen anions formed in the deprotonation of S_7NH and $S_4N_4H_4$. Nitrogen NMR chemical shifts (in ppm) are given in parentheses [ref. MeNO₂(l)]. The values for the imides are for tetrahydrofuran solutions and those for the anions are for liquid ammonia solutions.

containing the -NSNH group and, in view of previous chemical evidence,^{6,7} we attribute these two resonances to the inequivalent nitrogen atoms of (1). The co-ordinated $S_2N_2H^$ ligand exhibits ¹⁴N NMR signals at *ca.* -20 and -150 ppm.§ The two resonances for $S_2N_2H^-$ decrease in intensity after several days at 25 °C, while the resonance for $S_3N_3^-$ at -230 ppm grows concomitantly [Figure 1(b)]. This observation is consistent with the isolation of K+S₃N₃⁻ as the final product of the deprotonation of S₄N₄H₄ by potassium hydride.⁸ The transformations that occur upon deprotonation of S₇NH or S₄N₄H₄ with potassium amide in liquid ammonia are summarized in Scheme 1.

The $S_2N_2H^-$ ion is an important ligand in co-ordination chemistry^{15,16} and a key member of a growing series of sulphur-nitrogen anions.^{1-5,13} The characterization of (1) in solution is also significant in view of recent speculation regarding the identity of sulphur-nitrogen anions, *e.g.* $S_2N_2^{2-}$,^{14a} $S_2N_2H^-$,^{14b} and S_2N^- ,¹⁷ present as minor com-

 $[\]ddagger {}^{2}J({}^{15}N{}^{-15}N)$ was resolved by the application of a convolution-difference algorithm to the ${}^{15}N$ NMR data.

[§] Literature values were given relative to $NH_3(l)$;¹⁴ the chemical shifts given here have been converted with reference to $MeNO_2(l)$ [$\delta(NH_3)(l) = -380$ ppm].

ponents in ammonia solutions of $S_4N_4^{14}$ or sulphur in the presence of amide ion.¹⁷ However, the potassium salt, like $Na_2N_4S_4H_2^{9,18} [\equiv (Na+S_2N_2H^-)_2]$, is susceptible to explosion if subjected to mild heating or friction. As in the case of other thermally labile sulphur–nitrogen anions, it will be necessary to use large counterions, *e.g.* Ph₄As⁺ or (Ph₃P)₂N⁺,^{1-3,19} in order to isolate crystalline salts of this unstable anion.

We thank NSERC (Canada) for financial support in the form of operating grants (T. C.), a postgraduate fellowship (K. J. S.) and funds to purchase the NMR spectrometer. We also acknowledge the assistance of Professor H. J. Vogel and Dr. D. D. McIntyre with the ¹⁵N NMR experiments.

Received, 26th April 1990; Com. 0/01860K

References

- 1 W. Flues, O. J. Scherer, J. Weiss, and G. Wolmershäuser, Angew. Chem., Int. Ed. Engl., 1976, 15, 379.
- 2 J. Bojes, T. Chivers, W. G. Laidlaw, and M. Trsic, J. Am. Chem. Soc., 1979, 101, 4517.
- 3 T. Chivers, W. G. Laidlaw, R. T. Oakley, and M. Trsic, J. Am. Chem. Soc., 1980, 102, 5773.
- 4 J. Bojes, T. Chivers, W. G. Laidlaw, and M. Trsic, J. Am. Chem. Soc., 1982, 104, 4837.
- 5 M. Herberhold and W. Ehrenreich, Angew. Chem., Int. Ed. Engl., 1982, 21, 633.

- 6 R. Jones, P. F. Kelly, C. P. Warrens, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1986, 711.
- 7 T. Chivers, F. Edelmann, U. Behrens, and R. Drews, *Inorg. Chim. Acta*, 1986, **116**, 1509.
- 8 J. Bojes, T. Chivers, I. Drummond, and G. MacLean, *Inorg. Chem.*, 1978, 17, 3668.
- 9 (a) M. Becke-Goehring, Adv. Inorg. Chem. Radiochem., 1960, 2, 159; (b) M. Becke-Goehring and R. Schwarz, Z. Anorg. Chem., 1958, 296, 3.
- 10 T. Chivers, R. T. Oakley, O. J. Scherer, and G. Wolmershäuser, Inorg. Chem., 1981, 20, 914.
- 11 T. Chivers, A. W. Cordes, R. T. Oakley, and W. T. Pennington, Inorg. Chem., 1983, 22, 2429.
- 12 T. Chivers, D. D. McIntyre, K. J. Schmidt, and H. J. Vogel, *Can. J. Chem.*, 1989, **67**, 1788.
- 13 T. Chivers, D. D. McIntyre, K. J. Schmidt, and H. J. Vogel, J. Chem. Soc., Chem. Commun., 1990, preceding communication.
- 14 (a) P. S. Belton, I. P. Parkin, D. J. Williams, and J. D. Woollins, J. Chem Soc., Chem. Commun., 1988, 1479; (b) I. P. Parkin, J. D. Woollins, and P. S. Belton, J. Chem. Soc., Dalton Trans., 1990, 511.
- 15 T. Chivers and F. Edelmann, Polyhedron, 1986, 5, 1661.
- 16 P. F. Kelly and J. D. Woollins, Polyhedron, 1986, 5, 607.
- 17 P. Dubois, J. P. Lelieur, and G. Lepoutre, *Inorg. Chem.*, 1988, 27, 3032.
- 18 T. Chivers, F. Edelmann, and K. J. Schmidt, unpublished results.
- 19 J. Bojes, T. Chivers, and R. T. Oakley, *Inorg. Synth.*, 1989, 25, 30; 1989, 25, 35.